Using material advances in chalcogenide glasses to improve imaging lenses in the 8-14 μm waveband

Electro-Optic Materials

This text is an abstract. The full article will be made available in the SPIE Digital Library after publication.

Changes in the position of best focus over temperature are a major source of contrast degradation in the long-wave infrared. The prime sources of this focus shift are the difference between thermal expansion coefficients of lens material and housing material, and the change in refractive index over temperature ∂n/∂T. These parameters, combined with the limited depth of focus when using lenses for uncooled detectors, can rapidly degrade performance with changing temperature. First-order paraxial calculations to model these changes are discussed, with a demonstration of its application to single-element imaging systems. The model is then expanded to include two-element systems where both elements are made of the same optical material, or the more general case where different materials are combined. It is shown how a chalcogenide glasses are well suited for athermalization, and how a combination of material choice and optical prescription can lead to an improved passive optical athermalization scheme, i.e. stable performance over temperature with no moving components. The limits of the used model are discussed and examples given for various focal lengths.

(JV)

×

      Umicore uses certain monitoring and tracking technologies such as cookies. These technologies are used in order to maintain, provide and improve our services on an ongoing basis, and in order to provide our web visitors with a better experience.

      By clicking on the "Accept all" button you agree to the use of these cookies while using the website. For further information regarding how we use cookies and other tracking technologies, please see section 10 of our website privacy notice

          Necessary cookies are essential and help you navigate our website. This helps to support security and basic functionality and are necessary for the proper operation of our website, so if you block these cookies we cannot guarantee your use or the security during your visit.

          Cookies that help us to understand the behaviour of users of our website. This allows us to continuously improve our website to provide the best information in support of our project aims. These cookies also help us understand the effectiveness of our website. For instance these cookies tell us which pages visitors go to most often and if they get error messages from web pages.

          Cookies that deliver content to you based on your interests, which are assumed from your browsing history. Most Targeting Cookies track users via their IP address and, thus, may collect some Personal Data. Personal Data collected by Targeting Cookies may be shared with third parties, such as advertisers.